WAVE STAR Preselektor 0 - 30 MHz V.2.0e Cv1.0

Der Preselektor ist nur für Empfang geeignet!

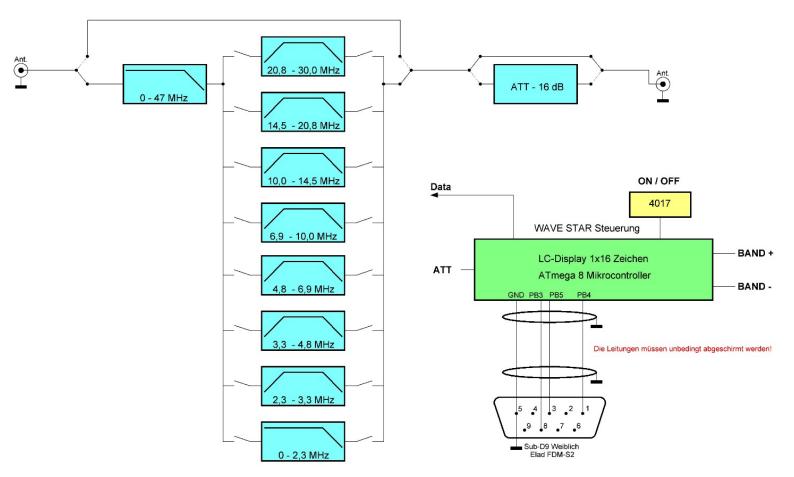
Hardware: Heinz Stampfl HB9KOC

Software: Ernst Kirschbaum DL2EBV Rolf Hasler HB9QN

Messungen: Hans Zahnd HB9CBU

Kurzwellenempfänger können durch ein zu starkes Summensignal oder kommerzielle Funkdienste wie auch Sendeamateure in der Nähe überfordert werden.

Ist der Empfänger den Anforderungen nicht gewachsen, kommt es zur Desensibilisierung.

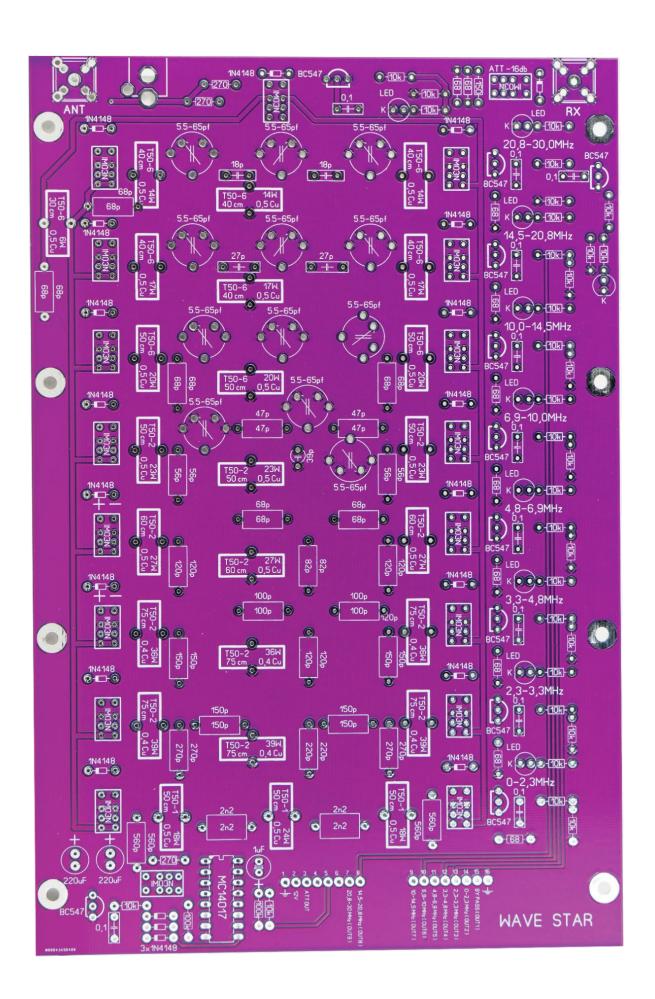

Weiter entstehen durch die Übersteuerung des Empfängereinganges Geisterstationen.

Zusätzliche Vorselektion schafft Abhilfe.

WAVE STAR ist ein intermodulationsfester Preselektorbausatz in Sub-Oktav Ausführung. Der enorm hohe IP3 Wert von 50 dBm \pm 2 dBm erlaubt es auch hochwertigen Empfängern WAVE STAR vorzuschalten. Der IM3-Wert des Preselektors muss immer höher als das folgende Gerät sein. Ansonsten ist die Aktion kontraproduktiv.

Für den Abgleich ist ein Spektrumanalysator mit Tracking notwendig. Oder mit einem einfachen Vektornetzwerkanalysator die sind im Internet sehr preiswert erhältlich.


WAVE STAR Block



WAVE STAR kann direkt von einem **Elad FDM-S2** SDR gesteuert werden. In den Elad-Modus gelangt man, wenn die Taste Band ↑ beim Einschalten 2 Sekunden gedrückt bleibt. Es erscheint auf dem LCD **ELAD-SFE-Mode.** Das Blockschema zeigt, wo die Datenleitungen angeschlossen werden. Diese sind unbedingt als geschirmte Leitungen auszuführen! WAVE STAR ist dafür nur softwareseitig vorbereitet! Die Verdrahtung sowie der Anschluss müssen selbst realisiert werden.

WAVE STAR Highlight:

- Grosssignalfest IM3 50 dBm +- 2 dB
- Geringe Einfügungsdämpfung 1dB
- Hohe Selektionswirkung
- By Pass Funktion über ATT-Taste möglich
- LCD- Anzeige
- Formschönes HF-dichtes Gehäuse

WAVE STAR Bauanleitung Filterplatine

Die Platinen sind direkt mit den Bauteilwerten bedruckt. Wir starten mit den flachsten Bauteilen.

Dioden

21x 1N4148 Lage beachten!

Widerstände

 $\begin{array}{l} \textbf{3x 270 } \Omega \text{ rot - violett - braun - gold} \\ \textbf{10x 68 } \Omega \text{ blau - grau - schwarz - gold} \\ \textbf{2x 100 } k\Omega \text{ braun - schwarz - gelb - gold} \\ \textbf{32x 10 } k\Omega \text{ braun - schwarz - orange - gold} \\ \textbf{1x 150 } \Omega \text{ braun - grün - braun - gold (ATT-16dB)} \end{array}$

LED

10x Lage beachten! Das kürzere Bein ist die Kathode. Als K auf der Platine aufgedruckt.

Relays

19x IM03N Lage beachten!

Logik-IC

1x MC14017BCP + IC-Sockel, 16-polig Lage beachten!

Keramikkondensator

2x 18 pF Aufgedruckt 18J 1KV (blau) 2x 27 pF Aufgedruckt 27J 3KV (blau) 11x 100 nF Aufgedruckt 104 (braun)

Styroflexkondensatoren

1x 39 pF stehend

2x 47 pF Aufgedruckt 47J 160V

2x 56 pF Aufgedruckt 56J 160V

6x 68 pF Aufgedruckt 68J 160V

1x 82 pF Aufgedruckt 82J 160V

2x 100 pF Aufgedruckt 100G 160V

3x 120 pF Aufgedruckt 120G 160V

4x 150 pF Aufgedruckt 150G 160V

1x 220 pF Aufgedruckt 220G 160V

2x 270 pFAufgedruckt 270G 160V

2x 560 pF Aufgedruckt 560G 160V

2x 2200 pF Aufgedruckt 2200G 160V

Elektrolytkondensatoren

2x 220 μF Lage beachten! Das längere Bein ist Plus, als + auf der Platine aufgedruckt.

1x 1 μF Lage beachten! Das längere Bein ist Plus, als + auf der Platine aufgedruckt.

Trimmkondensatoren

9x 5,5 - 65 pF (Plastik gelb) **3x 10 - 60 pF** (Keramik)

DC Buchse

1x 2,1 x 5,5mm

Transistoren

11x BC547 Lage beachten!

Spulen

Das Kernmaterial ist wie die Drahtlänge und Anzahl der Windungen aufgedruckt.

Das Durchstecken des Drahtes zählt als die erste Windung!

Der Kupferlackdraht lässt sich mit einem genügend heissen Lötkolben direkt verlöten.

TP 0 - 2,3 MHz

2x T50-1 (blau 18 W. 0,5 mm Cu Drahtlänge 50 cm)

1x T50-1 (blau 20 W. 0,5 mm Cu Drahtlänge 50 cm)

Spulen

Der Kupferlackdraht lässt sich beim Draht mit 0,4 mm Durchmesser nicht direkt verlöten. Hier muss der Lack erst abgeschabt werden.

BPF 2,3 - 3,3 MHz

3x T50-2 (rot 39 W. 0,4 mm Cu Drahtlänge 75 cm)

BPF 3,3 - 4,8 MHz

3x T50-2 (rot 36 W. 0,4 mm Cu Drahtlänge 75 cm)

BPF 4,8 - 6,9 MHz

3x T50-2 (rot 30 W. 0,5 mm Cu Drahtlänge 60 cm) Vorsicht Aufdruck (27 W) auf der Platine ist falsch

BPF 6,9 - 10 MHz

3x T50-2 (rot 23 W. 0,5 mm Cu Drahtlänge 50 cm)

BPF 10 - 14,5 MHz

3x T50-6 (gelb 20 W. 0,5 mm Cu Drahtlänge 50 cm)

BPF 14,5 - 20,8 MHz

3x T50-6 (gelb 17 W. 0,5 mm Cu Drahtlänge 40 cm)

BPF 20,8 - 30 MHz

3x T50-6 (gelb 14 W. 0,5 mm Cu Drahtlänge 40 cm)

TPF 47 MHz

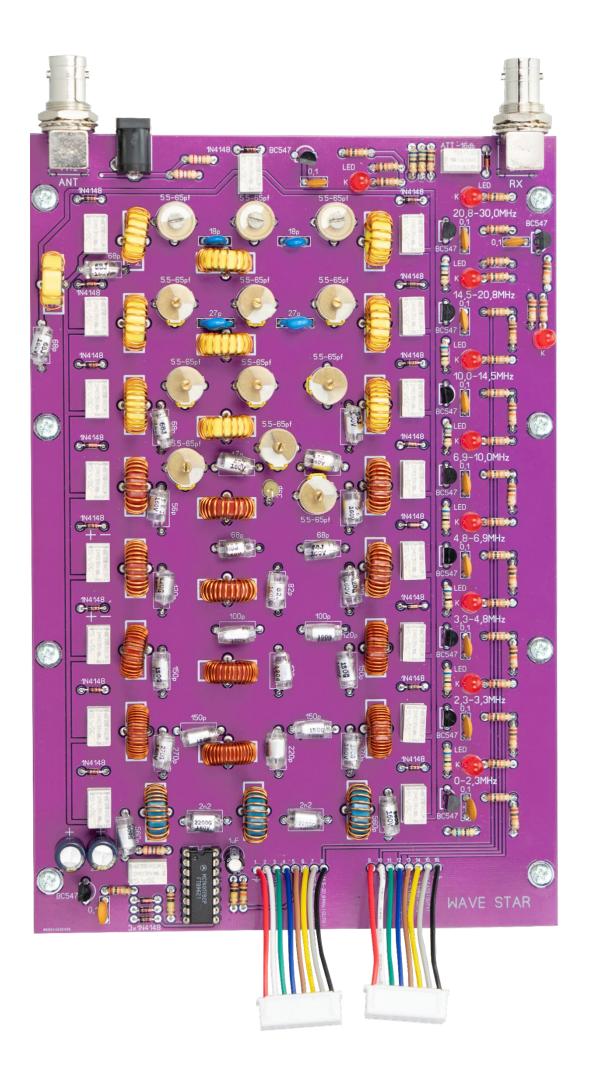
1x T50-6 (gelb 6 W. 0,5 mm Cu Drahtlänge 30 cm)

Abstandshalter

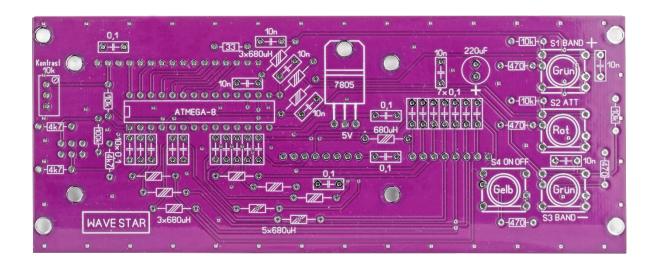
8x M3 x 10 mm

Kreuzschlitzschrauben

8x M3 x 5 mm


HF-Ein- / Ausgang

2x BNC


Steuerleitung 8-polig

2x auf 45 mm kürzen und verzinnen (siehe Foto). Lage beachten!

Die Filterplatine ist nun fertig bestückt.

WAVE STAR Bauanleitung Steuerplatine

Die Platinen sind direkt mit den Werten bedruckt. Wir starten mit den flachsten Bauteilen.

Widerstände

 $3x 4,7 k\Omega$ gelb - violett - rot - gold

 $4x 10 k\Omega$ braun - schwarz - orange - gold

4x 470 Ω gelb - violett - braun – gold

 $1x 33 \Omega$ orange - orange - schwarz - gold

1x 100 kΩ braun - schwarz - schwarz - orange – braun

Drosseln

12x 680 μH blau - grau - braun – silber

1x Ersatz

Steuer-IC

1x IC-Sockel, 28-polig + ATmega 8 Lage beachten!

Spannungsregler

1x L7805CV

Kreuzschlitzschraube

1x M3 x 5mm + 1x 6-kant Mutter

Trimmer-Potentiometer

1x 10k (LCD-Kontrast)

Keramikkondensator

7x 10 nF Aufgedruckt 103 (gelb), 1x Ersatz **21x 100 nF** Aufgedruckt 104 (braun)

Elekrolytkondensator

1x 220 μF Lage beachten! Das längere Bein ist Plus, als + auf der Platine aufgedruckt.

Buchsenleiste

1x 16-pol

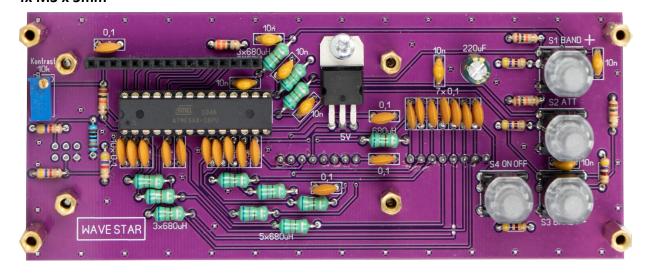
Buchsenleiste

2x 8-pol Lage beachten! Buchsenleiste und Verbindungsstecker zur Filterplatine.

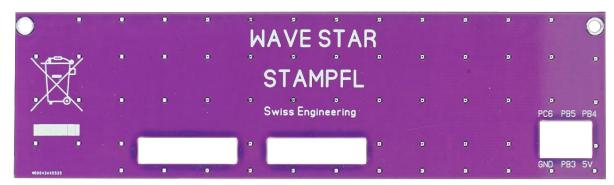
Taster

2x grün + Verlängerung und Kappe Auf die Lage achten! Stufe am Taster und Aufdruck beachten!

1x rot + Verlängerung und Kappe Auf die Lage achten! Stufe am Taster und Aufdruck beachten!


1x gelb + Verlängerung und Kappe Auf die Lage achten! Stufe am Taster und Aufdruck beachten!

Abstandshalter


4x M3 x 12 mm (LC-Display) 4x M3 x 5 mm

LC-Display

1x LC-Display + 1x Stiftleiste 16-pol 4x M3 x 5mm

Abstandhalter

2x M3 x 10 mm

Abstandhalter

4x M3 x 20 mm + 6

Der erste Testlauf

Wir verbinden die Steuerplatine mit der Filterplatine und legen über den Hohlstecker 11 - 16 Volt an. Wir prüfen als erstes, ob sich WAVE STAR zuverlässig ein- und ausschalten lässt?

Wir stellen den LCD-Kontrast mittels Spindeltrimmer ein (Uhrzeigersinn = zunehmend).

Nach dem Einschalten geht WAVE STAR automatisch in den By Pass Modus.

Wir prüfen die Beleuchtung der Taster.

Die ATT Taste leuchtet noch nicht.

Ein **kurzes Drücken der ATT Taste aktiviert das -16 dB Dämpfungsglied**. Der Taster muss nun rot leuchten.

Sollten die Taster nicht leuchten, dann ist es wahrscheinlich, dass die Taster falschherum eingelötet wurden.

Wir testen nun die verschiedenen Bänder. LEDs zeigen auf der Filterplatine an, welches Band aktiv ist.

Durch permanentes Drücken des Bandtasters läuft die Bandwahl kontinuierlich ab. Durch längeres Drücken der ATT-Taste springt WAVE STAR in den By Pass Modus.

Wenn alle Steuerfunktionen ok sind, machen wir uns an die elektrische Prüfung.

Die elektrische Prüfung

Dafür ist ein Spektrumanalysator mit einem Tracking-Generator notwendig.

Die Bereiche: 0 - 2,3 / 2,3 - 3,3 / 3,3 - 4,8 / 4,8 - 6,9 MHz sind abgleichfrei.

Für die restlichen 4 Bänder reicht erstmals mittels Trimmer-Kondensatoren eine Grobeinstellung.

Der Einbau

Wir legen das Innenleben in das Gehäuse ein und verschrauben alles kräftig mit der Gehäuse-Unterseite. (M3 x 5 mm, 12 Stück)

Zum Schluss bringen wir die selbstklebenden Gummifüsse an.

Erst jetzt im Gehäuse nehmen wir den genauen Abgleich vor!

Mit 6 Blechschrauben wird die Oberseite des Gehäuses verschraubt. Lage beachten!

WAVE STAR ist nun einsatzbereit.

Es bleiben folgende Bauteile übrig.

Mehrere Meter Cu-Lackdraht 0,5 mm

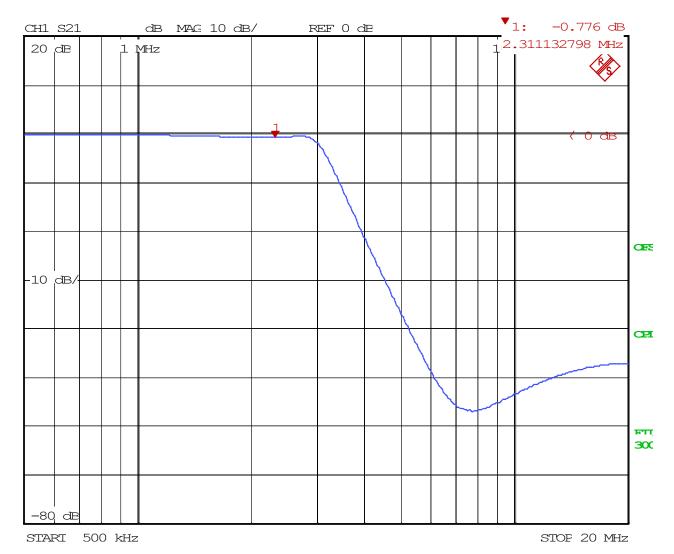
1x Drossel 680 µH

1x 100 nF Kondensator

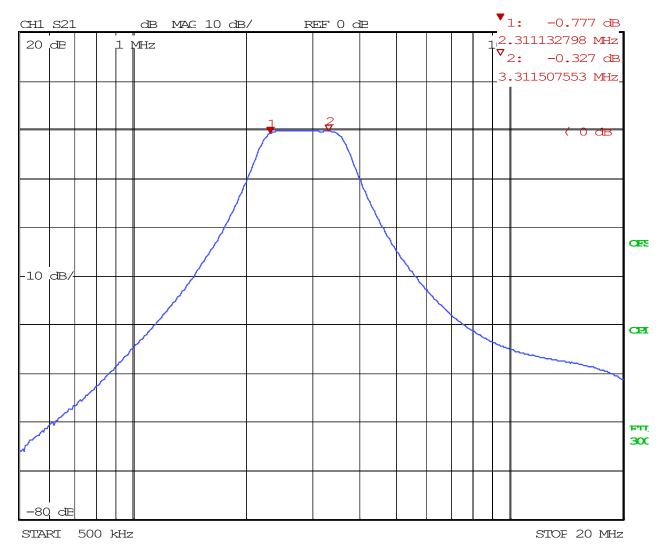
1x 10 nF Kondensator

3x 150 Ω Widerstände

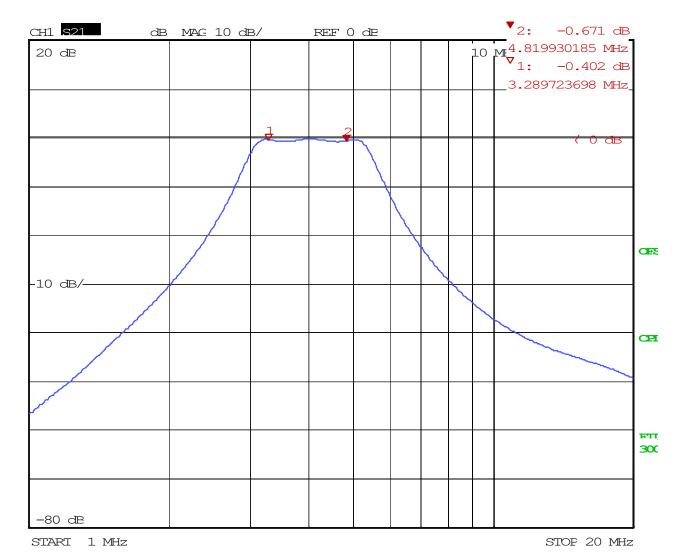
1x 4,7 kΩ Widerstand

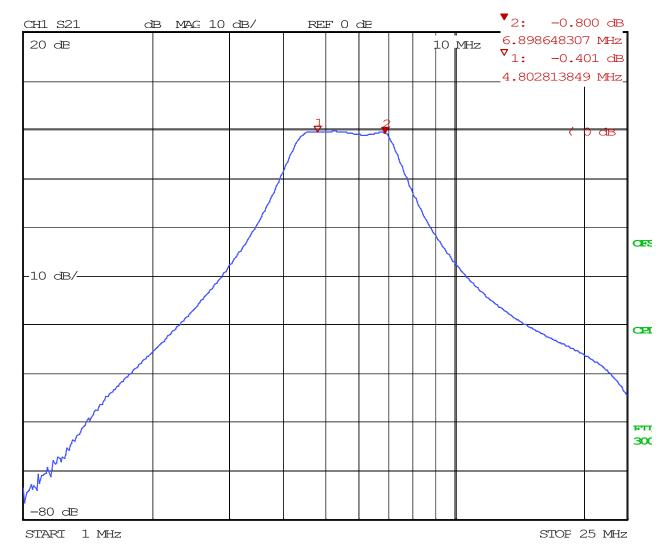

2x Abstandhalter M3 x 10 mm

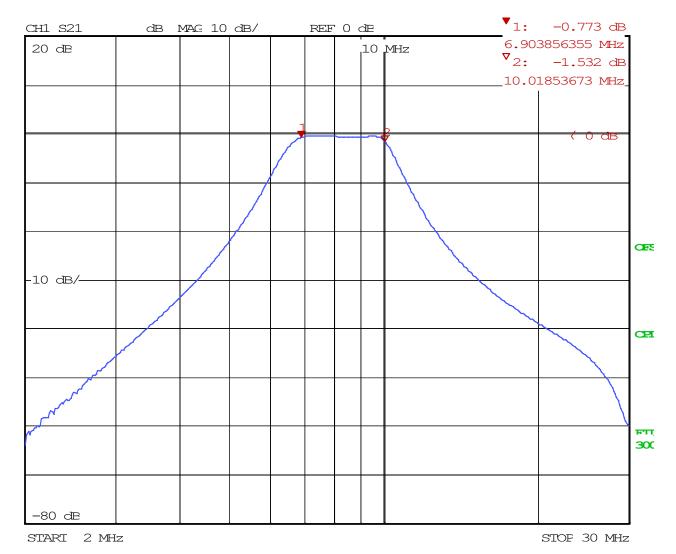
1x M3 x 5mm Schrauben

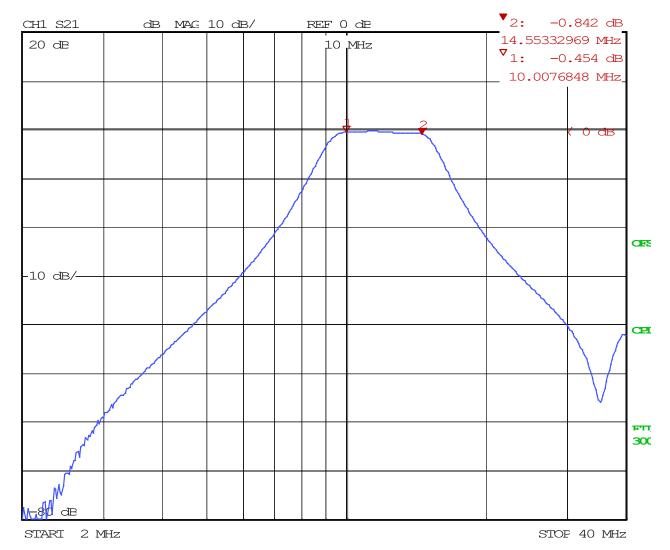

Die Tabelle zeigt eingeschlossene Amateur- und Rundfunkbänder von WAVE STAR.

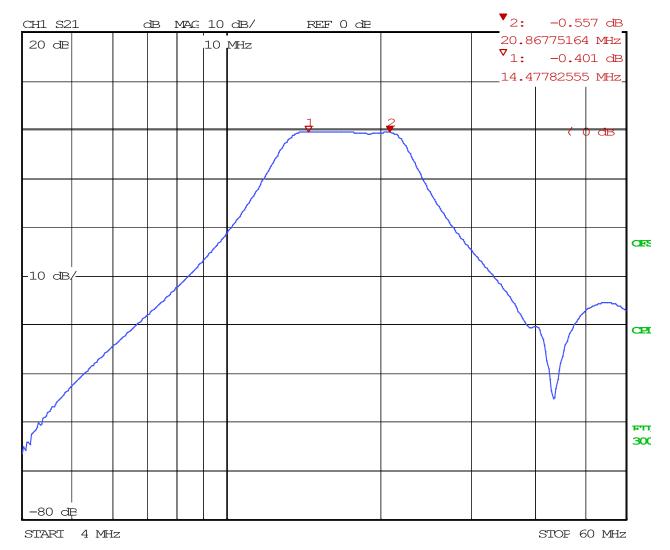
Band	ВС	Ham	Anfang (kHz)	Ende (kHz)	Wave Star		HC/LC
			0	150			
LW	Х		150	285			
			285	520			
MW	Х		520	1700			
			1700	1800			
160m		Х	1800	2000			
			2000	2300	2300		
120m	Х		2300	2495		2300	
			2495	3200			
90m	Х		3200	3400	3300	3300	1.43
			3400	3500			
80m		х	3500	3800			
			3800	3900			
75m	Х		3900	4000			
			4000	4750			
60m	Х		4750	5060	4800	4800	1.45
			5060	5250			
60m		х	5250	5450			
			5450	5900			
49m	Х		5900	6200			
			6200	7000	6900	6900	1.44
40m		х	7000	7200			
41m	Х		7200	7450			
			7450	9400			
31m	Х		9400	9900			
			9900	10100	10000	10000	1.45
30m		х	10100	10150			
			10150	11600			
25m	Х		11600	12100			
			12100	13570			
22m	Х		13570	13870			
			13870	14000			
20m		Х	14000	14350			
			14350	15100	14500	14500	1.45
19m	Х		15100	15800			

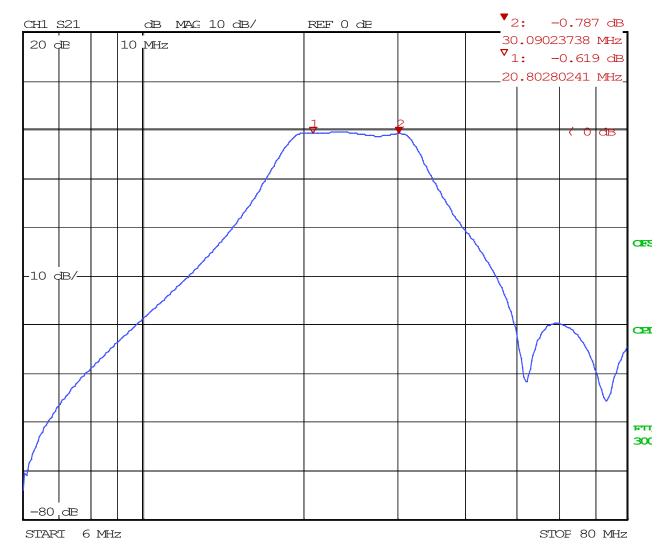

			15800	18068			
17m		Х	18068	18168			
			18168	17480			
16m	Х		17480	17900			
			17900	18900			
15m	Х		18900	19020			
			19020	21000	20800	20800	1.43
15m		х	21000	21450			
13m	Х		21450	21850			
			21850	24890			
12m		х	24890	24990			
			24990	25600			
11m	Х		25600	26100			
			26100	28000			
10m		х	28000	29700		30000	1.44

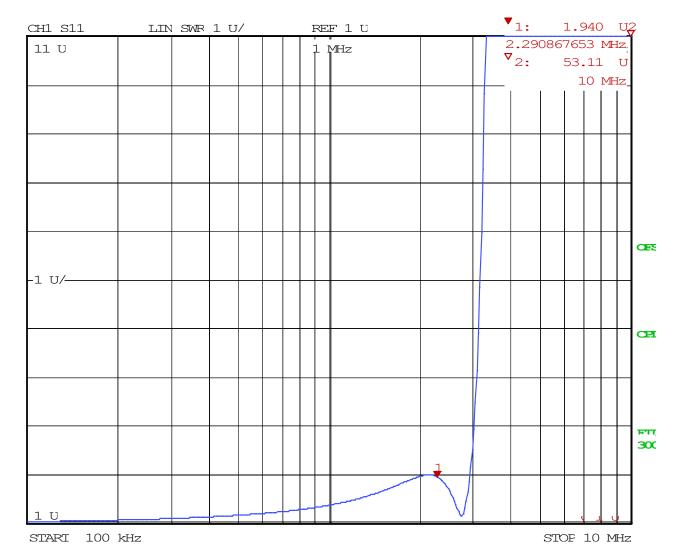

Date: 27.APR.98 01:35:26

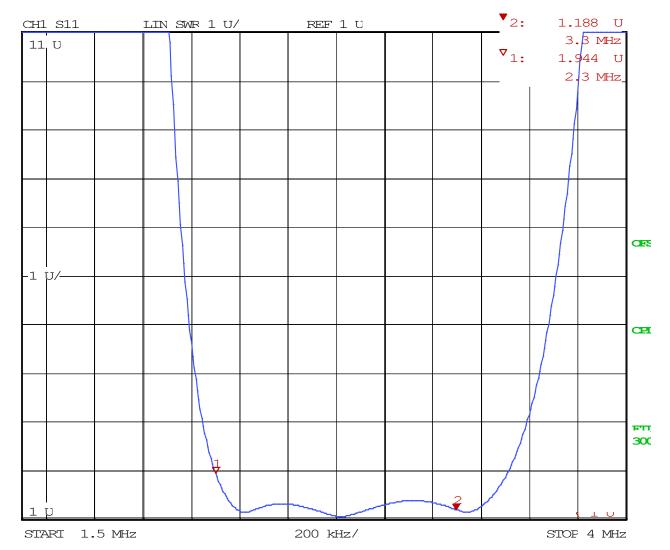

Date: 27.APR.98 01:34:16

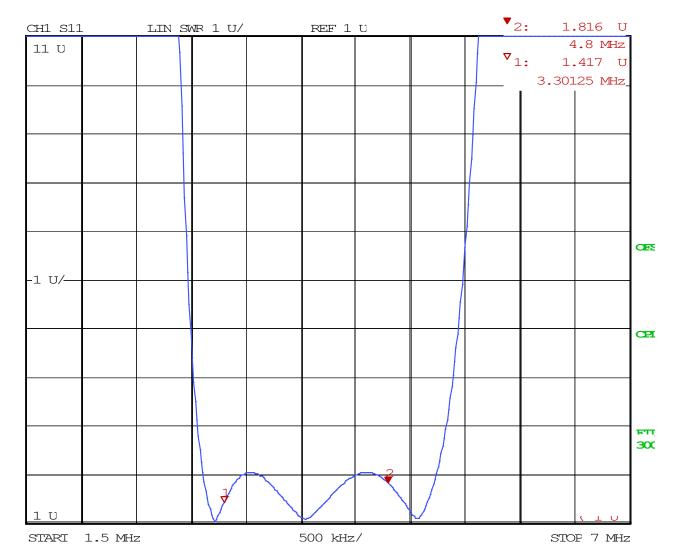

Date: 27.APR.98 01:31:40

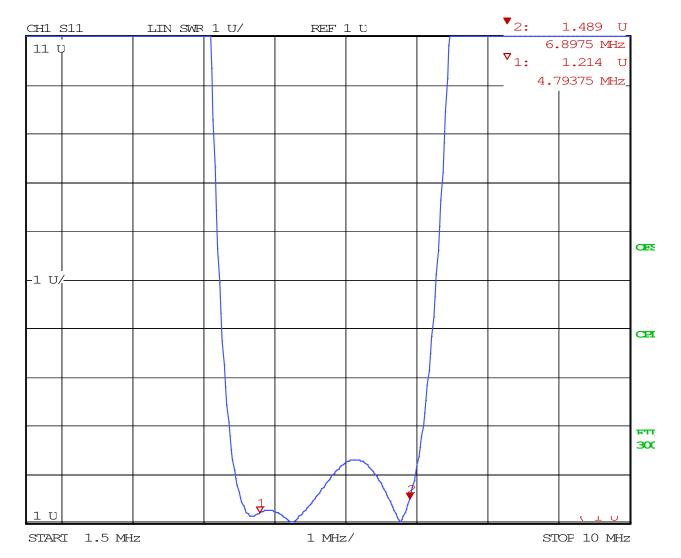

Date: 27.APR.98 01:37:40


Date: 27.APR.98 01:39:19

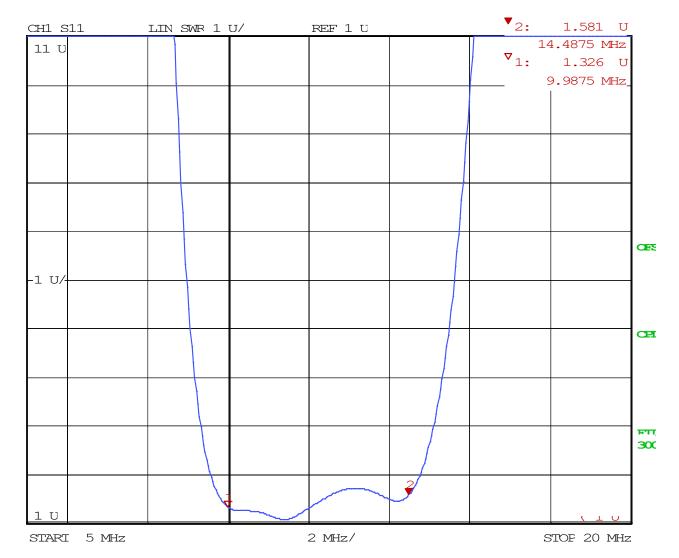

Date: 27.APR.98 01:41:00

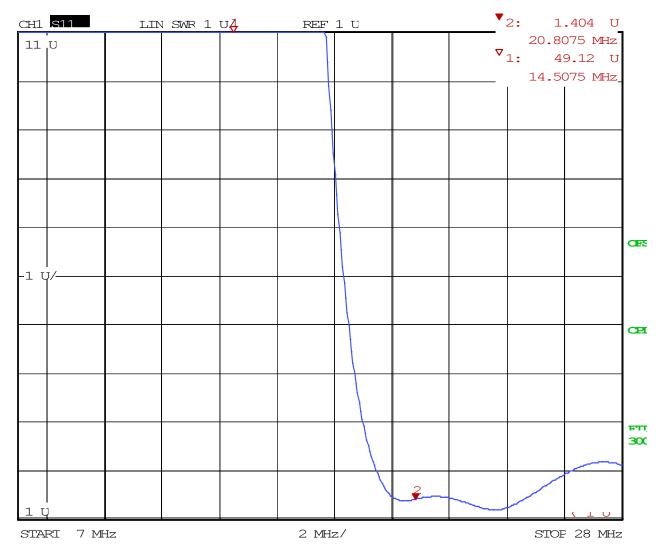

Date: 27.APR.98 01:43:12

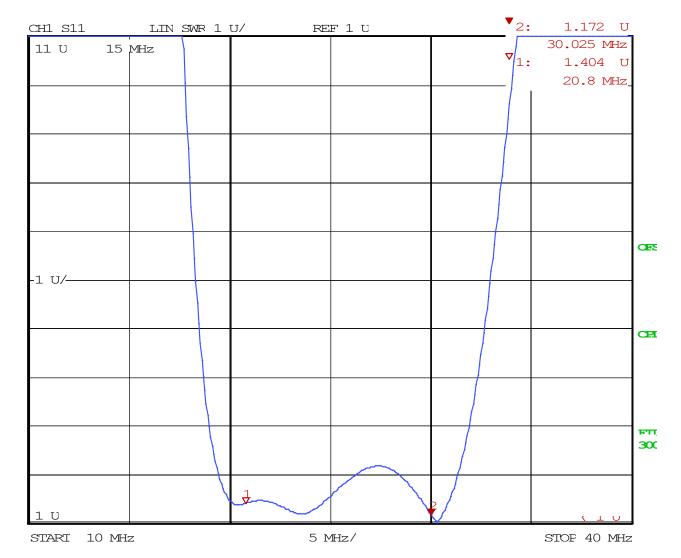

Date: 27.APR.98 01:45:10

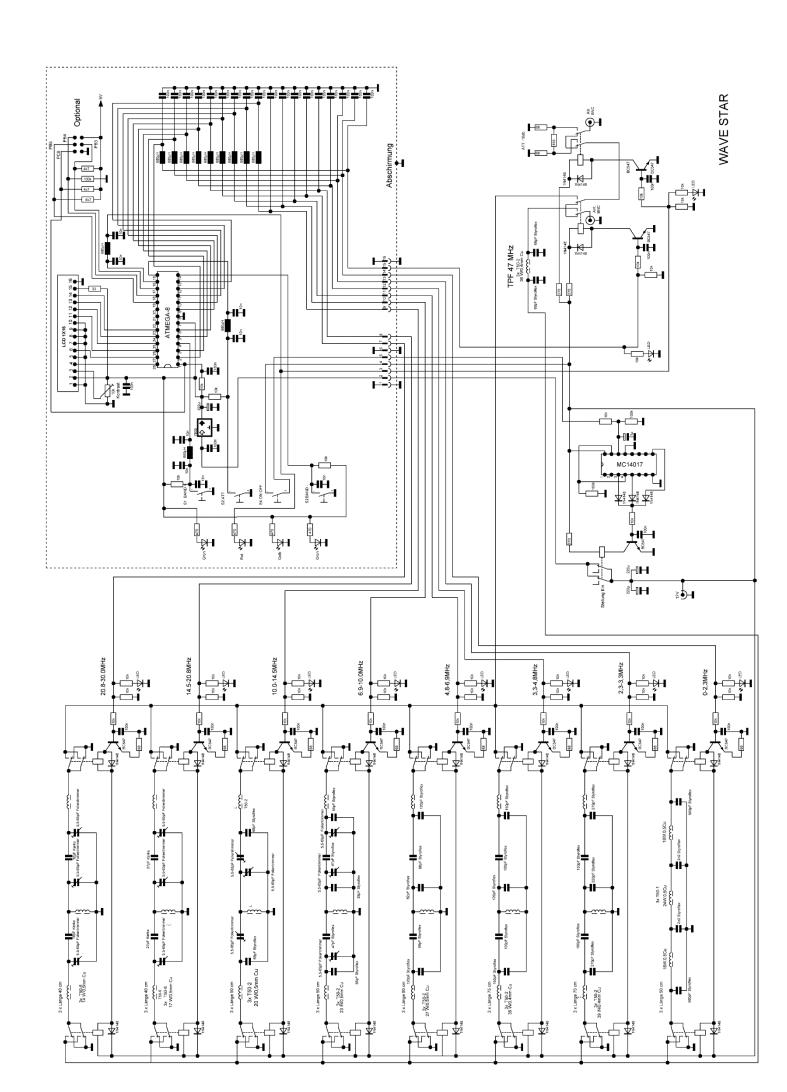

Date: 27.APR.98 01:49:45

Date: 27.APR.98 01:51:19


Date: 27.APR.98 01:53:00


Date: 27.APR.98 01:54:24


Date: 27.APR.98 01:57:05


Date: 27.APR.98 01:58:07

Date: 27.APR.98 02:03:38

Date: 27.APR.98 02:06:29

